
Using artdaq to create
a prototype event-builder

for Darkside-50

The SSI and RSI groups 1

1 Introduction

We have created a prototype event-builder for DarkSide-50, as a demonstration of how such a
program might be built using the artdaq framework. artdaq provides the “generic” part of the
event-building infrastructure. This generic infrastructure assumes that events are made up of
one or more fragments, each of which can be uniquely identified by a pair of numbers: an event id
(also called sequence id), which identifies the event to which the fragment belongs, and a fragment
id, which indicates which piece of the event is represented by the fragment. For DarkSide-50, the
fragment corresponds to the data from one digitizer board.

artdaq uses MPI[1] to create a program that runs multiple Unix processes, possibly on multiple
nodes. It also uses OpenMP[2] for thread-level parallelism within some of these processes. It uses
the art framework [3] to run modules, which would normally be supplied by an experiment, to do
work. In the prototype, we have not separated the experiment-specific code into libraries separate
from the artdaq framework code.

Our prototype event-builder program, builder, does not connect to a live data feed; it reads
data from a configurable number of files, each file containing simulated data from one digitizer
board. builder combines the fragments carrying the board data into complete events which are
then sent to the be processed by the art event-processing framework. We have written a data
compression module, suitable for use in art, that compresses each board using the Huffman
compression algorithm[4], with a symbol table that is read at configuration time.

builder contains processes with several different tasks.

1. Each “detector” process emulates the data feed of one digitizer board; each reads one data
file, and sends the fragments to its corresponding “fragment receiver” process. Our emulation
uses MPI over InfiniBand to send data. In our emulation, the data as sent already include
fragment and event ids, as well as timestamps. We rely on the fragment and event id
information during routing of fragments and event building, and do not use the timestamp.

2. Each “fragment receiver” process receives fragments from a single “detector” and uses each
fragment’s event id to route the fragment to the correct “event builder” process.

3. Each “event builder” process collects all the fragments for the events routed to it.When the
“event builder” process receives a fragment that completes an event, the completed event is
then sent to another thread in the process for processing by art. The modules to be run by
art are specified using art’s runtime configuration mechanism, and thus can be changed
without recompilation of the program.

1Contacts: Kurt Biery (biery@fnal.gov), Jim Kowalkowski (jbk@fnal.gov) and Marc Paterno (paterno@fnal.gov).

mailto:biery@fnal.gov
mailto:jbk@fnal.gov
mailto:paterno@fnal.gov


We have written an art module that does (lossless) Huffman compression of the fragments
carrying the board data. Within each event, each fragment is compressed independently of the
other fragments of that event; they are compressed in threads running in parallel.

2 Methods, Assumptions, and Procedures

We performed our performance measurements on a set of four 32-core Linux nodes. Each node
has 4 sockets, each with an 8-core AMD 6128 processor. Each node has 64 GiB RAM and a
RAID I disk. They are running Scientific Linux Fermi v5.5. They are connected to a switch via
QDR Infiniband and are on a private 1 Gb ethernet private network.

We built the software using the GCC C++ compiler, version 4.6.2, using -O3 optimization.
Table 1 lists the software products and versions used in these measurements. art openmp is an

product version and qualifiers

artdaq commit #3d76010e
art openmp v0.00.04 -q e1

Table 1: The software products and versions used in the mea-
surements in this paper.

early prototype version of an OpenMP-enabled art product. In this exercise, we have not made
use of any of the thread parallelism portions of art openmp; the only thread parallelism used is
within the compression module.

The configuration run used 5 “detectors”, 5 “fragment receivers”, and 5 “event builders”,
distributed among the 4 nodes as shown in Figure 1. Each of the “event builder” processes

grunt2 grunt3 grunt4

grunt5

eb4 eb2eb5 eb3

fr3fr2fr1

eb1

fr5fr4

det1 det3det2det5det4

Figure 1: The layout of processes used in this experiment. det
indicates a “detector” process, fr indicates a “fragment receiver”
process, and eb indicates an “event buider” process. It is the
“event builder” processes that run art.

2



was configured to use an OpenMP thread pool of size 5, and thus 5-way thread parallelism was
enabled in each “event builder” process. The MPI program launch mechanism starts all the
processes. Each “detector” process reads its own data file. They do not begin sending data to
the “fragment receivers” until all have read the full data file. This is done so that the throughput
measurements do not depend on the disk reading speed of the “detector” processes. After sending
the last of the fragements read from its file, each “detector” processes sends and end-of-data
marker to its “fragment receiver”.

Each “fragment receiver” process receives data from a single “detector”, looks at the event id
in the data, and routes the fragment to the appropriate “event builder”, based on a round-robin
algorithm. When a “fragment receiver” receives an end-of-data marker from its “detector”, it sends
end-of-data markers to each “event builder”.

Each “event builder” process receives fragments from all “fragment receivers”. When an “event
builder” has received all the fragments of a given event, it sends that event to the thread running
art. art then passes the event to each of the configured modules. In our prototype, the only
module used is the module that compresses the fragment data. Orderly program shutdown
happens when the last of the “event builder” processes sees the last of the end-of-data markers it
is expecting.

3 Results and Discussion

3.1 Timing results

Figure 2 shows the time taken by the compression module to compress each of the first 250
events in the data stream. The first event takes approximately 6 ms longer than each of the
remaining events, but each of the compression modules seems to have reached a steady state by
the second event it sees. This may indicate the time taken to create the OpenMP thread pool.

Compression of the fragments for one event takes on average about 20 ms (mean is 20.37 ms,
standard deviation of 0.58 ms); this is the wall-clock time required for the team of 5 threads
to compress the 5 fragment. This corresponds to an aggregate event throughput mean of
246 events/s, with a standard deviation of 7 events/s. Fig. 3 shows the distribution of measured
compression times. It is clearly non-gaussian, and when the data are separated by the id of the
“event builder” that processed the event, two approximately gaussian peaks are clearly evident.

3.2 Compression results

The Huffman algorithm we have coded takes, at configuration time, a symbol frequency table,
so that it is not necessary to scan the data to obtain symbol frequencies. We constructed the
symbol frequency table from the same data we are compressing. With this initial compression
algorithm, we have achieved a mean compression factor of 4.87, with a standard deviation
of 0.17. Figure 4 shows the distribution of compression ratios achieved in the data sample, on a
fragment-by-fragment basis.

3.3 Throughput results

With the given configuration, we obtain throughput rates (measuring from the time after the
“detectors” have read the data files, but before they being sending data, to the time at which
the “event builder” processes have seen the last event) of 2–2.2 GiB/s. We have measured both
the single-process throughput rate and the aggregate rate for all “event builder” processes. We
measure the rate averaged over approximately one-second intervals. Figure 5 shows the single-

3



event number

co
m

p
re

ss
io

n
ti

m
e

(m
s)

20

22

24

26

0 50 100 150 200 250

0
1
2
3
4

Figure 2: The time taken by the each of the compression modules
on each of the first 250 events. There are 5 art processes used,
each running one compression module. The different symbol
colors and shapes denote the different art processes.

process throughput rate, and figure 6 shows the aggregate rate. The mean value over the duration
of the run is 371 events/s, and the standard deviation of the distribution is 12 events/s.

4 Conclusions

We have not yet done any significant optimization of the code, and have several opportunities
to take more advantage of the native parallelism of the problem. For example, we are currently
using board-level parallelism in the compression module; it would be simple, and given sufficient
computing resources faster, to use channel-level parallelism. This would give us up to 38-way,
rather than 5-way, parallelism.

Even without optimizations, the system we prototyped is capable of processing approximately
250 event/s, with all the “fragment receiving” and “event building” processes running on a single
32-core commodity computer.

4



Compression time (ms)

C
ou

n
t

0

200

400

600

20 22 24 26

Figure 3: The distribution of the time taken for a Huffman com-
pression module to compress an event. The algorithm has been
trained on the same data sample being compressed in this mea-
surement. Note that the “rug” plot below the histogram shows 5
outliers; these are the 5 events each of which is the first processed
by an individual compression module.

5



Compression ratio

C
ou

n
t

0

200

400

600

800

1000

1200

3.0 3.5 4.0 4.5 5.0

Figure 4: The distribution of the compression factor of the (loss-
less) Huffman compression algorithm, for each board in each
event.

6



time (s)

th
ro

u
gh

p
u

t
(e

ve
n

ts
/
s)

70

75

0 2 4 6 8 10 12

0
1
2
3
4

Figure 5: Throughput rate for each of the 5 “event builder” pro-
cesses. The different symbol colors and shpaes denote the differ-
ent art processes.

7



time (s)

th
ro

u
gh

p
u

t
(e

ve
n

ts
/
s)

350

360

370

380

0 2 4 6 8 10 12

Figure 6: Aggregate throughput rate of the 5 “event builder”
processes. The red line shows the mean value, averaged over the
full time of the run.

8



Bibliography

[1] The MPI-2 standard, available at http://www.mcs.anl.gov/research/projects/mpi/
mpi-standard/mpi-report-2.0/mpi2-report.htm.

[2] OpenMP Application Program Interface, version 3.1, July 2011, available at http://www.
openmp.org/mp-documents/OpenMP3.1.pdf.

[3] Information about the art event processing framework is available at https://cdcvs.fnal.
gov/redmine/projects/art.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction
to Algorithms, Second Edition, MIT Press and McGraw-Hill, 2001.Section 16.3, pp. 385–
392.

9

http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/mpi2-report.htm
http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/mpi2-report.htm
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
https://cdcvs.fnal.gov/redmine/projects/art
https://cdcvs.fnal.gov/redmine/projects/art

	Introduction
	Methods, Assumptions, and Procedures
	Results and Discussion
	Timing results
	Compression results
	Throughput results

	Conclusions
	Bibliography

